翻訳と辞書
Words near each other
・ Heterochorista trivialis
・ Heterochroma
・ Heterochroma insignis
・ Heterochromatin
・ Heterochromatin protein 1
・ Heterochromia iridum
・ Heterochromis multidens
・ Heterochrony
・ Heterochrosis
・ Heterochrosis molybdophora
・ Heterochrosis oligochrodes
・ Heterocithara
・ Heteroclinic bifurcation
・ Heteroclinic cycle
・ Heteroclinic network
Heteroclinic orbit
・ Heteroclinus
・ Heteroclinus adelaidae
・ Heteroclinus antinectes
・ Heteroclinus eckloniae
・ Heteroclinus equiradiatus
・ Heteroclinus fasciatus
・ Heteroclinus flavescens
・ Heteroclinus heptaeolus
・ Heteroclinus johnstoni
・ Heteroclinus kuiteri
・ Heteroclinus macrophthalmus
・ Heteroclinus marmoratus
・ Heteroclinus nasutus
・ Heteroclinus perspicillatus


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Heteroclinic orbit : ウィキペディア英語版
Heteroclinic orbit

In mathematics, in the phase portrait of a dynamical system, a heteroclinic orbit (sometimes called a heteroclinic connection) is a path in phase space which joins two different equilibrium points. If the equilibrium points at the start and end of the orbit are the same, the orbit is a homoclinic orbit.
Consider the continuous dynamical system described by the ODE
::\dot x=f(x)
Suppose there are equilibria at x=x_0 and x=x_1, then a solution \phi(t) is a heteroclinic orbit from x_0 to x_1 if
::\phi(t)\rightarrow x_0\quad \mathrm\quad t\rightarrow-\infty
and
::\phi(t)\rightarrow x_1\quad \mathrm\quad t\rightarrow+\infty
This implies that the orbit is contained in the stable manifold of x_1 and the unstable manifold of x_0.
==Symbolic dynamics==
By using the Markov partition, the long-time behaviour of hyperbolic system can be studied using the techniques of symbolic dynamics. In this case, a heteroclinic orbit has a particularly simple and clear representation. Suppose that S=\ is a finite set of ''M'' symbols. The dynamics of a point ''x'' is then represented by a bi-infinite string of symbols
:\sigma =\ \}
A periodic point of the system is simply a recurring sequence of letters. A heteroclinic orbit is then the joining of two distinct periodic orbits. It may be written as
:p^\omega s_1 s_2 \cdots s_n q^\omega
where p= t_1 t_2 \cdots t_k is a sequence of symbols of length ''k'', (of course, t_i\in S), and q = r_1 r_2 \cdots r_m is another sequence of symbols, of length ''m'' (likewise, r_i\in S). The notation p^\omega simply denotes the repetition of ''p'' an infinite number of times. Thus, a heteroclinic orbit can be understood as the transition from one periodic orbit to another. By contrast, a homoclinic orbit can be written as
:p^\omega s_1 s_2 \cdots s_n p^\omega
with the intermediate sequence s_1 s_2 \cdots s_n being non-empty, and, of course, not being ''p'', as otherwise, the orbit would simply be p^\omega.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Heteroclinic orbit」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.